A Q-ANALOGUE OF HYPERGEOMETRIC SERIES BY Q-EXPONENTIAL FUNCTIONS

LAXMI MAJHI¹ AND YUDHISTHIRA JAMUDULIA¹

ABSTRACT. We establish some new transformation involving bilateral hypergeometric series and summation formulae by q-exponential functions and mentioned two special cases of it.

2010 Mathematics Subject Classification. 33D15, 33D99.

KEYWORDS AND PHRASES. Summation formula, Basic hypergeometric series, Bilateral hypergeometric series, q-exponential function.

1. Introduction

The study of basic hypergeometric series started in 1748 by Euler. The basic hypergeometric series was first studied systematically by Heine [8], but many early results are attributed to Euler, Gauss and Jacobi. Hypergeometric series find applications in various field of mathematics and physics, including probability theory, combinatorial identities, fluid dynamics and quantum mechanics and also basic hypergeometric series are now major interactions with Lie algebras, combinatorics, special functions and number theory, primarily due to their ability to represent complex functions and solve differential equations that arises in these domains. Using different parameters in bilateral hypergeometric series, one can derive various summation identities involving sums over integers, including identities related to binomial coefficients, Fibonacci number, and other combinatorial sequences. Many mathematicians Andrew[1], Bailey[3, 2], Dogoull[6], Gasper[7], Ismail[9], Jackson[11, 10], Somashekara[15] and Slater[14] contributed to the summation and transformation of hypergeometric series identities. For more details about hypergeometric series and its applications see[15], [13], [10], [12], [4], [1] and [2].

Before, we going to prove main results, we introduce by presenting some standard definition and identities, for complex numbers a and q and |q| < 1, Pochhammar Symbol[7] is defined as

$$(a)_n := (a;q)_n := \prod_{k=0}^{n-1} (1 - aq^k),$$

$$(a)_{\infty} := (a;q)_{\infty} := \prod_{k=0}^{\infty} (1 - aq^k),$$

This work was supported by GMU, Sambalpur, Odisha for awarding seed fund research project [Order No.4934/GMU]under which this work has been done.

and

(1)
$$(a)_n := (a;q)_n := \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}.$$

It is easy to deduce the following identity:

(2)
$$(a)_{s+t} = (a)_s (aq^s)_t,$$

where s and t are non negative integers.

The basic hypergeometric series [7] is defined as

$${}_{j}\phi_{k}(a_{1},a_{2},\cdots,a_{j};b_{1},b_{2},\cdots,b_{k};q,z) = \sum_{n=0}^{\infty} \frac{(a_{1};q)_{n}(a_{2};q)_{n}(a_{3};q)_{n}\cdots(a_{j};q)_{n}}{(q;q)_{n}(b_{1};q)_{n}(b_{2};q)_{n}\cdots(b_{k};q)_{n}} [(-1)^{n}q^{\frac{n(n-1)}{2}}]^{1+k-j}z^{n},$$

where $q \neq 0$, which converges for $|z| < \infty$ if $j \leq k$ and for |z| < 1 if j = k+1.

The bilateral hypergeometric series[7] is defined as

$${}_{j}\psi_{k}(a_{1}, a_{2}, \cdots, a_{j}; b_{1}, b_{2}, \cdots, b_{k}; q, z) = \sum_{n=-\infty}^{\infty} \frac{(a_{1}; q)_{n}(a_{2}; q)_{n}(a_{3}; q)_{n} \cdots (a_{j}; q)_{n}}{(b_{1}; q)_{n}(b_{2}; q)_{n}(b_{3}; q)_{n} \cdots (b_{k}; q)_{n}} [(-1)^{n} q^{\frac{n(n-1)}{2}}]^{k-j} z^{n},$$

where which converges for $\left|\frac{b_1b_2b_3...b_k}{a_1a_2a_3...a_j}\right| < |z| < 1$ if j = k and for k > j it converges in the whole complex plane i.e for $|z| < \infty$.

Ramanujan's general theta function f(a,b) [5, 12] is given by

$$f(a,b) = 1 + \sum_{n=1}^{\infty} (ab)^{\frac{n(n-1)}{2}} (a^n + b^n)$$
$$= \sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}, |ab| < 1.$$

The q-binomial theorem [7] is given by

(3)
$$\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} z^n = \frac{(az;q)_{\infty}}{(z;q)_{\infty}}$$

and an interesting special case of q-exponential functions [7], which are due to Euler are given by

(4)
$$\sum_{n=0}^{\infty} \frac{1}{(q;q)_n} z^n = \frac{1}{(z;q)_{\infty}}.$$

Jacobi's well-known triple product identity[7]

(5)
$$(zq^{\frac{1}{2}}, q^{\frac{1}{2}}/z, q; q)_{\infty} = \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2/2} z^n$$

can be easily derived by using Hein's summation formula[7].

The following lemma was proved in 1970[1] which is used to prove our main results;

Lemma 1.1. [15]: Under the suitable conditions of convergence, if $c_n = \sum_{m=0}^{\infty} a_{m+n}b_m$, then,

(6)
$$\sum_{m=0}^{\infty} b_m \sum_{n=-\infty}^{\infty} a_n = \sum_{n=-\infty}^{\infty} c_n.$$

2. New transformation of bilateral hypergeometric series.

We prove some new transformation for bilateral basic hypergeometric series in this section.

Theorem 2.1. We have

$$\sum_{n=-\infty}^{\infty} \frac{z^n q^{n^2}}{(-zq^{n+1};q^2)_n} = \frac{(q^2, -zq, -q/z, -zq^{2n+1};q^2)_{\infty}}{(-1;q^2)_{\infty}}, \quad |z| < 1,$$

where q is a complex number with |q| < 1.

Proof. Let

$$a_n = q^{2n^2} z^n$$
, $b_n = \frac{(-1)^n}{(q^4; q^4)_n}$.

Then,

$$c_n = \sum_{m=0}^{\infty} a_{m+n} b_m$$

$$= \sum_{m=0}^{\infty} z^{m+n} q^{2(m+n)^2} \frac{(-1)^m}{(q^4; q^4)_m}$$

$$= \sum_{m=0}^{\infty} z^n z^m q^{2m^2 + 4mn + 2n^2} \frac{(-1)^m}{(q^4; q^4)_m}$$

$$= z^n q^{2n^2} (-zq^{4n+2}; q^4)_{\infty}.$$

Using (6), we get

$$\sum_{m=0}^{\infty} \frac{(-1)^m}{(q^4; q^4)_m} \sum_{n=-\infty}^{\infty} (q^2)^{n^2} z^n = \sum_{n=-\infty}^{\infty} z^n q^{2n^2} (-zq^{4n+2}; q^4)_{\infty},$$

now using (4), Jacobi Product[7] and by replacing q by q^2 , we get

(7)
$$\sum_{n=-\infty}^{\infty} \frac{z^n q^{n^2}}{(-zq^{n+1};q^2)_n} = \frac{(q^2, -zq, -q/z, -zq^{2n+1};q^2)_{\infty}}{(-1;q^2)_{\infty}}, \quad |z| < 1.$$

Theorem 2.2. We have

$$\sum_{n=-\infty}^{\infty} q^{2n} (q^{3(n+1)}; q^3)_{\infty} = \frac{(q; q^3)_{\infty}}{(q^2; q^3)_{\infty}}, \quad |q| < 1,$$

where q is a complex number.

Proof. Let

$$a_n = q^n z^n, \quad b_n = \frac{z^n}{(q^3; q^3)_n}.$$

Then,

$$c_{n} = \sum_{m=0}^{\infty} a_{m+n} b_{m}$$

$$= \sum_{m=0}^{\infty} q^{m+n} z^{m+n} \frac{z^{m}}{(q^{3}; q^{3})_{m}}$$

$$= \sum_{m=0}^{\infty} q^{m} q^{n} z^{m} z^{n} \frac{z^{m}}{(q^{3}; q^{3})_{m}}$$

$$= q^{n} z^{n} \sum_{m=0}^{\infty} \frac{(qz^{2})^{m}}{(q^{3}; q^{3})_{m}},$$

using (4), we get

$$c_n = q^n z^n \frac{1}{(qz^2; q^3)_{\infty}},$$

replacing a by qz^2 in equation (1.1), we get

$$c_n = q^n z^n \frac{1}{(qz^2; q^3)_n (z^2 q^{3n+1}; q^3)_{\infty}}$$

Using equation (6), we get

$$\sum_{m=0}^{\infty} \frac{z^m}{(q^3;q^3)_m} \sum_{n=-\infty}^{\infty} q^n z^n = \sum_{n=-\infty}^{\infty} q^n z^n \frac{1}{(qz^2;q^3)_n (z^2 q^{3n+1};q^3)_{\infty}},$$

now using (4), we get

$$\frac{1}{(z;q^3)_{\infty}} \sum_{n=-\infty}^{\infty} q^n z^n = \sum_{n=-\infty}^{\infty} \frac{q^n z^n}{(qz^2;q^3)_n (z^2 q^{3n+1};q^3)_{\infty}},$$

then

$$\sum_{n=-\infty}^{\infty} q^n z^n (z^2 q^{3n+1}; q^3)_{\infty} = (z; q^3)_{\infty} \sum_{n=-\infty}^{\infty} \frac{q^n z^n}{(qz^2; q^3)_n},$$

now replacing z by q, we get

$$\sum_{n=-\infty}^{\infty} q^{2n} (q^{3n+3}; q^3)_{\infty} = (q; q^3)_{\infty} \sum_{n=-\infty}^{\infty} \frac{(q^2)^n}{(q^3; q^3)_n}.$$

Now, again using equation (4), we get

$$\sum_{n=-\infty}^{\infty} q^{2n} (q^{3n+3}; q^3)_{\infty} = \frac{(q; q^3)_{\infty}}{(q^2; q^3)_{\infty}}.$$

Theorem 2.3. We have

(8)
$$\sum_{n=-\infty}^{\infty} \frac{z^n q^{n^2}}{(zq;q^4)_n} = \frac{(q^2, -zq, -q/z; q^4)_{\infty}}{(-1, zq; q^4)_{\infty}}, \quad |z| < 1,$$

where q is complex number with |q| < 1.

Proof. Let

$$a_n = z^n q^{n^2}, \quad b_n = \frac{(-1)^n}{(q^4; q^4)_n}.$$

Then,

$$c_n = \sum_{m=0}^{\infty} a_{m+n} b_m$$

$$= \sum_{m=0}^{\infty} z^{m+n} q^{(m+n)^2} \frac{(-1)^m}{(q^4; q^4)_m}$$

$$= z^n q^{n^2} \sum_{m=0}^{\infty} \frac{(q^2)^{\frac{m(m-1)}{2}} (-zq^{2n+1})^m}{(q^4; q^4)_m},$$

$$= z^n q^{n^2} (-zq^{2n+1}; q^4)_{\infty}.$$

Using (6), we get

$$\sum_{m=0}^{\infty} \frac{(-1)^m}{(q^4; q^4)_m} \sum_{n=-\infty}^{\infty} q^{n^2} z^n = \sum_{n=-\infty}^{\infty} z^n q^{n^2} (zq^{2n+1}; q^4)_{\infty}.$$

Using (4) and Jacobi triple product[15], we get

(9)
$$\frac{1}{(-1;q^4)_{\infty}}(q^2,-zq,-q/z;q^4)_{\infty} = \sum_{n=-\infty}^{\infty} z^n q^{n^2} (zq^{2n+1};q^4)_{\infty}.$$

Now replacing a by zq in (1), we get

(10)
$$(zq^{2n+1}; q^4)_{\infty} = \frac{(zq; q^4)_{\infty}}{(zq; q^4)_n},$$

using (10) in (9), we get

$$\frac{1}{(-1;q^4)_{\infty}}(q^2,-zq,-q/z;q^4)_{\infty} = \sum_{n=-\infty}^{\infty} z^n q^{n^2} \frac{(zq;q^4)_{\infty}}{(zq;q^4)_n},$$

which implies

$$\sum_{n=-\infty}^{\infty} \frac{z^n q^{n^2}}{(zq;q^4)_n} = \frac{(q^2,-zq,-q/z;q^4)_{\infty}}{(-1,zq;q^4)_{\infty}}$$

3. Some specific cases

In this part, we derive some specific cases of our Theorem 2.1 and Theorem 2.3.

(1) Replacing z by q in (7), we have

$$\sum_{n=-\infty}^{\infty} \frac{q^{n^2}}{(-q^{n+2}; q^2)_n} = (q^4; q^4)_{\infty} (-q^{2n+2}; q^2)_{\infty}.$$

(2) Replacing z by q in (8), we have

$$\sum_{n=-\infty}^{\infty} \frac{q^{n^2+n}}{(q^2; q^4)_n} = (-q^2; q^4)_{\infty}.$$

References

- G. E. Andrews, On a transformation of bilateral series with applications, Proc. Amer. Math. Soc., 22(1970), 554-558.
- [2] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No.32, Cambridge University Press, Cambridge (1935).
- W. N. Bailey, On the basic bilateral hypergeometric series 2φ2, Quart. J. Math. (Oxford) 2(1) (1950) 194–198.
- [4] W. N. Bailey, On the analogue of Dixon's theorem for bilateral basic hypergeometric series, Quart. J. Math. (Oxford) 2(1) (1950) 318–320.
- [5] B. C. Berndt, Ramanujan's Notebooks, Part III (1991) (New York: Springer-Verlag)
- [6] J. Dougall, On Vandermonde's theorem and some more general expansions, Proc. Edin. Math. Soc. 25 (1907) 114–132.
- [7] G. Gasper and M. Rahman, Basic Hypergeometric series, Encyclopedia of mathematics, Cambridge University press, Cambridge, (2004).
- [8] E. Heine, Handbuch die Kugelfunctionen, Theorie und Anwendung, Springer, Berlin(1898).
- [9] M. E. H. Ismail, A simple proof Ramanujan's $_1\phi_1$ sum, Proc. Amer. Math. Soc. 63 (1977) 185–186.
- [10] F. H. Jackson, Summation of q-hypergeometric series, Messenger Math. 50 (1921) 101--112.
- [11] M. Jackson, On Lerch's transcendant and the basic bilateral hypergeometric series 2φ₂, J. London Math. Soc. 25 (1950) 189–196.
- $[12]\,$ S. Ramanujan, $Notebooks,\,2$ Volumes (1957) (Bombay: Tata Institute of Fundamental Research)
- [13] M. Schlosser, Elementary derivations of identities for bilateral basic hypergeometric series, Selecta Math. (N. S.) 9 (2003) 119–159.
- [14] L. J. Slater, Generalised Hypergeometric Functions, Cambridge University Press, Cambridge(1966).
- [15] D. D. Somashekara and K. N. Vidya, On transformation of certain bilateral basic hypergeometric series and their applications, Proc. Indian Acad. Sci., (2019), 129-144.

School of Mathematics, Gangadhar Meher University, Sambalpur, Odisha, India-768004

 $Email\ address: {\tt lmajhi@gmuniversity.ac.in}$

School of Mathematics, Gangadhar Meher University, Sambalpur, Odisha, India-768004

Email address: yjamudulia@gmuniversity.ac.in